TEST 1 (Complex Numbers & Vectors)

Worth 5% of the Year Mark 50 minutes permitted.

Name:

SOLUTIONS

Score: (out of 60)

1. [10 marks]

Given complex numbers z and w where z = 3 + 5i and w = 4 - 7i

(a) Determine, exactly

$$|z-w| = |-1+12i| = \sqrt{145}$$

$$\lim_{z \to \infty} (ii) \quad \operatorname{Re}(z) - \operatorname{Im}(w) = 3 - (-7)$$

$$= 10$$

3m (iii) $\frac{1}{\overline{z} - \overline{w}} = \frac{1}{-1 - 12i} \times \frac{-1 + 12i}{-1 + 12i} \checkmark$

$$= \frac{-1 + 12i}{\sqrt{145}}$$

$$= \frac{1}{\sqrt{145}} + \frac{12}{\sqrt{145}} i \sqrt{2}$$
[3]

(b) Find the value of a such that az + 3w = 6 - 31i

4m

2. [8 marks]

Consider the complex numbers $\mathbf{u} = 2\sqrt{3} - 2\mathbf{i}$ and $\mathbf{v} = \mathbf{i} - 1$

3m (a) Write **u** and **v** in exact polar form.

$$\therefore 0 = -\frac{\pi}{6}$$

3m (b) Simplify $\frac{u^2}{v^6}$, leaving your answer exactly in polar form.

$$\frac{16 \text{ ais } \left(-\frac{\pi}{3}\right)}{8 \text{ ais } \left(\frac{9\pi}{2}\right)} = \frac{16 \text{ ais } \left(-\frac{\pi}{3}\right) \checkmark}{8 \text{ ais } \left(\frac{\pi}{2}\right) \checkmark}$$
$$= 2 \text{ ais } \left(-\frac{5\pi}{6}\right) \checkmark$$

u= 4 cis (- 1/6) V

 $V = \sqrt{2}$ us $\left(\frac{3\pi}{4}\right)$

2w (c) Find exactly $|\mathbf{u} + 2\mathbf{v}|$

$$\begin{vmatrix} 2\sqrt{3} - 2i + 2i - 2 \end{vmatrix}$$

$$= \begin{vmatrix} 2\sqrt{3} - 2 \end{vmatrix}$$

$$= \frac{2\sqrt{3} - 2}{2\sqrt{3} - 2}$$

[3]

[3]

3. [9 marks]

(a) Sketch the graphs in the Argand Plane to indicate the set of numbers z that satisfy:

3m (i)
$$\frac{z}{z} = i$$

let $z = a + bi$
 $a + bi = b + ai$

[3]

3*m* (ii)
$$-\frac{\pi}{6} \le Arg\left[(1+\sqrt{3}i)z\right] \le \frac{\pi}{3}$$

$$-\frac{T}{6} \leq Arg(z) + \frac{T}{3} \leq \frac{T}{3} \checkmark$$

$$-\frac{\pi}{2} \leq Arg(\mathbf{z}) \leq 0$$

[3]

- 3in
- (b) Describe the shaded region in the Argand plane below.

[3]

$$\frac{|z| \le 4}{\text{Im}(z) \ge 2}$$

$$\sqrt{2} = \sqrt{3}$$

4. [5 marks]

For the region in the Argand plane defined by the inequality $|z-4-2i| \le 2$,

determine the maximum and minimum value for the argument of z.

$$Min Arg(2) = 0$$

:
$$\max_{x \in \mathbb{R}} Arg(z) = 53.13^{\circ}$$
 or 0.93° (2 d.p.)

5. [5 marks]

(a) State the geometrical relationship between the complex numbers \mathbf{w} and \mathbf{z} if it is known that $\mathbf{w} = i\mathbf{z}$

W is a rotation
$$\frac{11}{2}$$
 anti-clockwise about the origin.
Also, $|w| = |z|$.

[2]

(b) The three points A, B and C in the Argand plane correspond to complex numbers \mathbf{z}_1 , \mathbf{z}_2 , and \mathbf{z}_3 respectively. The triangle ABC is isosceles and has a right angle at A.

Write down algebraically the relationship between $\mathbf{z}_3 - \mathbf{z}_1$ and $\mathbf{z}_2 - \mathbf{z}_1$. Explain how you arrived at your answer.

$$Z_{3} - Z_{1} = \overrightarrow{AC}$$

$$Z_{2} - Z_{1} = \overrightarrow{AB}$$

$$Since \overrightarrow{AB} \stackrel{\longrightarrow}{\text{H}} \overrightarrow{AC}, \qquad [3]$$

$$(\overline{Z_{3}} - \overline{Z_{1}}) = i(\overline{Z_{2}} - \overline{Z_{1}})$$

5

Also accept
$$z_2 - \overline{z}_1 = i(\overline{z}_3 - \overline{z}_1)$$

6. [23 marks]

Consider the following vectors in space:

$$\mathbf{a} = \begin{pmatrix} -2 \\ 2 \\ -3 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} x \\ 3 \\ -2 \end{pmatrix}, \qquad \mathbf{c} = \begin{pmatrix} 5 \\ 2 \\ -z \end{pmatrix}, \qquad \text{and} \qquad \mathbf{d} = \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix}$$

Determine:

(a) vector **e** such that **e** is parallel to **d** and double its length.

$$e = \begin{pmatrix} 2 \\ 0 \\ -10 \end{pmatrix}$$
 [1]

[3]

[2]

[3]

3m (b) the acute angle between vectors **a** and **d** (to nearest degree).

$$-2 + 15 = (J17)(J26) \cos 0$$

$$\cos 0 = \frac{13}{(J7)(J26)}$$

$$- 0 = 52^{\circ} \text{ (nearest degree)}$$

2m (c) the relationship between x and z if c is perpendicular to b.

$$c \cdot b = 0$$
 $5x + 2z + 6 = 0$

3m (d) the value of x such that **a** is parallel to **b**.

$$\begin{pmatrix} -\frac{2}{2} \\ -3 \end{pmatrix} = k \begin{pmatrix} \frac{x}{3} \\ -2 \end{pmatrix}$$

$$2 = 3k \quad \text{and} \quad -3 = -2k \quad \text{since } k \text{ is not unique,}$$

$$k = \frac{3}{2} \quad \text{No value of } x \text{ will make } a \text{ } || b \text{ .}$$

(e) vector \mathbf{f} such that \mathbf{f} is in the direction of \mathbf{a} with a magnitude of 17 units.

$$f = \frac{17}{\sqrt{17}} \begin{pmatrix} -2 \\ 2 \\ -3 \end{pmatrix}$$

$$= \sqrt{17} \begin{pmatrix} -2 \\ 2 \\ -3 \end{pmatrix} = \sqrt{-2\sqrt{17}}$$

$$= \sqrt{3\sqrt{17}}$$

(f) a vector which is perpendicular to both a and d.

4m let the vector required be
$$\chi = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$

$$-2a + 2b - 3c = 0$$

$$a - 5c = 0$$

then,
$$-10c + 2b - 3c = 0$$

so, choose
$$c=2$$
, then $a=10$ and $b=13$ \Rightarrow $V = \begin{pmatrix} 10 \\ 13 \\ 2 \end{pmatrix}$ [4]

Suppose that vectors a and d represent position vectors of points A and D respectively.

(g) Determine the position vector \mathbf{p} for the point P which divides \overrightarrow{AD} internally in the ratio 3:1.

$$= \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ -\frac{q}{2} \end{pmatrix}$$

(h) Determine the vector equation for the line in space that connects points A and D.

$$z' = \alpha + \lambda \left(\frac{d - \alpha}{2} \right)$$

$$= \left(\frac{-2}{2} \right) + \lambda \left(\frac{3}{-2} \right)$$

[4]