Year 12 MAS 3C/3D February 2010

TEST 1 (Complex Numbers & Vectors)

Worth 5% of the Year Mark 50 minutes permitted.

Name : /(/é'gu,r{(o/\jf > Score :

(out of 60)
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1. [10 marks]
Given complex numbers z and w where z= 3+5i and w = 4-7i

(a) Determine, exactly
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(b) Find the value bf a suchthat az + 3w = 6 — 31i
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2. [8 marks]

Congider the complex numbers wu = 243 -2i and v=1i-1
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o (a) Write u and v in exact polar form.
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A, (b) Simplify Lo , leaving your answer exactly in polar form.
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3. [9 marks]

(a) Sketch the graphs in the Argand Plane to indicate the set of numbers z that satisfy :
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(b) Describe the shaded region in the Argand plane below.
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4, [5 marks]

For the region in the Argand plane defined by the inequality ' z -4 -2 <2,

determine the maximum and minimum value for the argument of z.
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s. [S marks]

(2) State the geometrical relationship between the complex numbers w and z if it 1s known
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(b) The three points A, B and C in the Argand plane correspond to complex numbers z, , z,, and
3w z; respectively. The triangle ABC is isosceles and has a right angle at A.

Write down algebraically the relationship between z;—z, and z,—z,.

Explain how you arrived at your answer.
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6. [23 marks]

Consider the following vectors in space :

-2 X S5
a = 21, b = 3, ¢ = 2 1, and d = 0
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Determine :
I (a) vector e such that e is parallel to d and double its length.
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Dim (¢ the relationship between x and z if ¢ is perpendicular to b.
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(e) vector f such that f is in the direction of a with a magnitude of 17 units.
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® a vector which is perpendicular to both a and d.
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Suppose that vectors a and d represent position vectors of points A and D respectively.

(2) Determine the position vector p for the point P which divides AD internally in the ratio
3:1.
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(h) Determine the vector equation for the line in space that connects points A and D.
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End of Test o






